Scaling Python with Dask
From Data Science to Machine Learning
Descriere
Modern systems contain multi-core CPUs and GPUs that have the potential for parallel computing. But many scientific Python tools were not designed to leverage this parallelism. With this short but thorough resource, data scientists and Python programmers will learn how the Dask open source library for parallel computing provides APIs that make it easy to parallelize PyData libraries including NumPy, pandas, and scikit-learn.
Authors Holden Karau and Mika Kimmins show you how to use Dask computations in local systems and then scale to the cloud for heavier workloads. This practical book explains why Dask is popular among industry experts and academics and is used by organizations that include Walmart, Capital One, Harvard Medical School, and NASA.
Opiniile cititorilor
Fii primul care lasă un review!
Contribuția ta este extrem de valoroasă! Ajută-ne să construim cea mai LIT comunitate de cititori din România.
Ai deja cont? Conectează-te aici.